A Simple, Adjustably Robust, Dynamic Portfolio Policy under Expected Return Ambiguity

Mustafa Ç. Pınar

1Faculty of Engineering
Bilkent University

Anadolu University Seminar, Nov. 30, 2012, Eskişehir
1 Introduction

2 The Single Period Problem

3 The Multiple-Period Problem
Background on Portfolio Selection

- A core subject of mathematical finance and operations research for six decades

Contents
Introduction
The Single Period Problem
The Multiple-Period Problem

Multi-period Portfolio Selection

PINAR
Robust Dynamic Portfolio Management under Ambiguity
A core subject of mathematical finance and operations research for six decades

starting with the ground-breaking work of Markowitz who initiated the Mean-Variance (MV) portfolio theory.
A core subject of mathematical finance and operations research for six decades

starting with the ground-breaking work of Markowitz who initiated the Mean-Variance (MV) portfolio theory.

An alternative approach takes the view that the investor is maximizing an expected utility function of his final wealth.
Background on Portfolio Selection

- A core subject of mathematical finance and operations research for six decades
- starting with the ground-breaking work of Markowitz who initiated the Mean-Variance (MV) portfolio theory.
- An alternative approach takes the view that the investor is maximizing an expected utility function of his final wealth.
- I shall use the expected utility approach in the present paper.
Background on Multi-period Portfolio Management

- For the expected utility maximization of final wealth, some simple dynamic portfolio choice rules have been derived by Mossin (1968).
Background on Multi-period Portfolio Management

- For the expected utility maximization of final wealth, some simple dynamic portfolio choice rules have been derived by Mossin (1968).
- Extensions of the MV portfolio theory to multi-period portfolio selection problems have also been studied,
For the expected utility maximization of final wealth, some simple dynamic portfolio choice rules have been derived by Mossin (1968).

Extensions of the MV portfolio theory to multi-period portfolio selection problems have also been studied, perhaps with less success as the problems tend to get much harder in comparison to the single period case.
For the expected utility maximization of final wealth, some simple dynamic portfolio choice rules have been derived by Mossin (1968).

Extensions of the MV portfolio theory to multi-period portfolio selection problems have also been studied, perhaps with less success as the problems tend to get much harder in comparison to the single period case.

An exception is Li and Ng (2000) where the authors solve in closed form the multi-period mean-variance portfolio selection problem.
Background on Multi-period Portfolio Management

- For the expected utility maximization of final wealth, some simple dynamic portfolio choice rules have been derived by Mossin (1968).
- Extensions of the MV portfolio theory to multi-period portfolio selection problems have also been studied, perhaps with less success as the problems tend to get much harder in comparison to the single period case.
- An exception is Li and Ng (2000) where the authors solve in closed form the multi-period mean-variance portfolio selection problem.
- The solution looks complicated.
In the present paper, I shall study the multi-period portfolio selection problem for a negative exponential utility investor.
In the present paper, I shall study the multi-period portfolio selection problem for a negative exponential utility investor operating in a market where asset returns are normally distributed.
In the present paper, I shall study the multi-period portfolio selection problem for a negative exponential utility investor operating in a market where asset returns are normally distributed taking into account estimation errors or inaccuracies in the expected return information.
In the present paper, I shall study the multi-period portfolio selection problem for a negative exponential utility investor operating in a market where asset returns are normally distributed taking into account estimation errors or inaccuracies in the expected return information. Hence I shall deal with a dynamic portfolio “robust” against ambiguity in mean returns.
Connections to Robust Optimization

- I shall apply the Adjustable Robust Optimization (ARO) paradigm to the dynamic portfolio selection problem under mean return ambiguity.
Connections to Robust Optimization

- I shall apply the Adjustable Robust Optimization (ARO) paradigm to the dynamic portfolio selection problem under mean return ambiguity.
- ARO leads usually to intractable optimization problems.
Connections to Robust Optimization

- I shall apply the Adjustable Robust Optimization (ARO) paradigm to the dynamic portfolio selection problem under mean return ambiguity.
- ARO leads usually to intractable optimization problems.
- approximated by the use of affine policies that give tractable problems, but optimality of affine policies is not guaranteed.
Connections to Robust Optimization

- I shall apply the Adjustable Robust Optimization (ARO) paradigm to the dynamic portfolio selection problem under mean return ambiguity.
- ARO leads usually to intractable optimization problems.
- Approximated by the use of affine policies that give tractable problems, but optimality of affine policies is not guaranteed.
- Under the setting of the present paper I obtain a closed-form, partially myopic dynamic portfolio policy.
Connections to Robust Optimization

- I shall apply the Adjustable Robust Optimization (ARO) paradigm to the dynamic portfolio selection problem under mean return ambiguity.
- ARO leads usually to intractable optimization problems.
- Approximated by the use of affine policies that give tractable problems, but optimality of affine policies is not guaranteed.
- Under the setting of the present paper I obtain a closed-form, partially myopic dynamic portfolio policy.
- The optimal policy is also affine in the estimate of the mean return.
The Setting

- There are n risky assets with return vector \mathbf{X}.

[Content continues on subsequent pages]
The Setting

- There are n risky assets with return vector \mathbf{X}
- which follows a Gaussian law with mean \mathbf{Y} and positive definite variance-covariance matrix Σ.
The Setting

- There are n risky assets with return vector \mathbf{X}
- which follows a Gaussian law with mean \mathbf{Y} and positive definite variance-covariance matrix Σ.
- There is also a risk-less asset with return $R \geq 1$.

The Setting

- There are \(n \) risky assets with return vector \(\mathbf{X} \)
- which follows a Gaussian law with mean \(\mathbf{Y} \) and positive definite variance-covariance matrix \(\Sigma \).
- There is also a risk-less asset with return \(R \geq 1 \).
- We assume that the investor has a CARA utility, e.g. a negative exponential utility function.
The mean \mathbf{Y} of the return vector \mathbf{X} takes values in the ellipsoidal ambiguity set around the nominal (or, estimated) expected return vector $\bar{\mathbf{X}}$:

$$U_X = \{ \mathbf{Y} | \| \Sigma^{-1/2} (\mathbf{Y} - \bar{\mathbf{X}}) \|_2 \leq \sqrt{\epsilon} \},$$
The mean \mathbf{Y} of the return vector \mathbf{X} takes values in the ellipsoidal ambiguity set around the nominal (or, estimated) expected return vector $\bar{\mathbf{X}}$:

$$U_X = \{ \mathbf{Y} | \| \Sigma^{-1/2} (\mathbf{Y} - \bar{\mathbf{X}}) \|_2 \leq \sqrt{\epsilon} \},$$

where ϵ is some positive number referred to as the ambiguity radius.
Ambiguity

- The mean \mathbf{Y} of the return vector \mathbf{X} takes values in the ellipsoidal ambiguity set around the nominal (or, estimated) expected return vector $\bar{\mathbf{X}}$:

$$U_X = \{ \mathbf{Y} | \| \Sigma^{-1/2} (\mathbf{Y} - \bar{\mathbf{X}}) \|_2 \leq \sqrt{\epsilon} \},$$

- where ϵ is some positive number referred to as the *ambiguity radius*.

- It is well-known (DeMiguel and Nogales (2007)) that portfolio weights are very sensitive to imprecision in mean return.
The mean Y of the return vector X takes values in the ellipsoidal ambiguity set around the nominal (or, estimated) expected return vector \bar{X}:

$$U_X = \{ Y \mid \| \Sigma^{-1/2}(Y - \bar{X}) \|_2 \leq \sqrt{\epsilon} \},$$

where ϵ is some positive number referred to as the ambiguity radius.

It is well-known (DeMiguel and Nogales (2007)) that portfolio weights are very sensitive to imprecision in mean return.

Protecting against ambiguity in the portfolio choice leads to more stable portfolios delivering a higher out-of-sample Sharpe ratio compared to classical Markowitz portfolios Garlappi et al. (2007).
The following experiment is based on DeMiguel/Nogales (2007).

Given are the (theoretical) moments of monthly returns

\[\hat{\mu} = \begin{pmatrix} 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \end{pmatrix}, \quad \Sigma = 0.04 \times I_{N \times N}. \]

The Mean-Variance optimal weights for any risk aversion coefficient are 0.25 for each asset!\(^1\)

\(^1\)To verify this, set \(\hat{\mu} = a1 \) and \(\Sigma = bI \) in Eq. (3).
A simple experiment cont’d

Generate 140 returns $r_i \sim \mathcal{N}(\mu, \Sigma)$, $i = 1 \ldots 140$.

For different values of t calculate sample moments from

$$\hat{\mu} = \frac{1}{120} \sum_{i=t}^{120+t-1} r_i, \quad \hat{\Sigma} = \frac{1}{120 - 1} \sum_{i=t}^{120+t-1} (r_i - \hat{\mu})(r_i - \hat{\mu})'$$

Rolling window estimation:

Rebalancing date $t = 1$: Calculate $\hat{\mu}$ and $\hat{\Sigma}$ using $r_1 \ldots r_{120}$
Rebalancing date $t = 2$: Calculate $\hat{\mu}$ and $\hat{\Sigma}$ using $r_{2} \ldots r_{121}$

...until $t = 20$.

In the following, for each $\hat{\mu}$, $\hat{\Sigma}$ optimal weights are calculated.
A simple experiment III

\[\bar{\mu} \text{ and } \Sigma \text{ are unknown:} \]

\[\bar{\mu} \text{ and } \Sigma \text{ are estimated using 120 monthly returns } r_i \text{ (rolling window).} \]

The dashed line shows optimal portfolio weights without estimation error \((= 0.25)\) and \(\gamma = 1.\)
A simple experiment IV

\[\bar{\mu} \] is estimated and \[\Sigma \] is known:

![Weights and rebalancing dates graph]

D. Niedermayer / H. Zimmermann: Robust Portfolio Optimization 12 / 37
The Single Period Problem

The Multiple-Period Problem

A simple experiment V

\(\bar{\mu} \) is known and \(\Sigma \) is estimated:

![Graph showing weights over rebalancing dates with \(T=120 \)]
Statistical Motivation for Ellipsoidal Ambiguity

- The ellipsoidal uncertainty set is justified according to Stambaugh
The ellipsoidal uncertainty set is justified according to Stambaugh.

The quantity

\[\frac{T(T-n)}{(T-1)n} (Y - \bar{X})^T \Sigma^{-1} (Y - \bar{X}) \]

has a \(\chi^2 \) distribution with \(n \) degrees of freedom, where \(T \) is the number of past observations for the asset prices.
Statistical Motivation for Ellipsoidal Ambiguity

- The ellipsoidal uncertainty set is justified according to Stambaugh
- The quantity
 \[\frac{T(T - n)}{(T - 1)n} (\mathbf{Y} - \mathbf{\bar{X}})^T \Sigma^{-1} (\mathbf{Y} - \mathbf{\bar{X}}) \]
 has a χ^2 distribution with n degrees of freedom, where T is number of past observations for the asset prices.
- The ambiguity restriction
 \[\frac{T(T - n)}{(T - 1)n} (\mathbf{Y} - \mathbf{\bar{X}})^T \Sigma^{-1} (\mathbf{Y} - \mathbf{\bar{X}}) \leq \varepsilon \]
 can be interpreted as a “quantile” constraint for some quantile ε.

PINAR
Robust Dynamic Portfolio Management under Ambiguity
The Single-Period Model

- The investor allocates a capital \(W_0 \) to be invested in the set of risky assets and the risk-less asset.
The Single-Period Model

- The investor allocates a capital W_0 to be invested in the set of risky assets and the risk-less asset.
- The realized wealth W at the end of the period is given by

$$W(\omega) = \omega^T X + [W_0 - 1^T \omega] R. \quad (1)$$
The Single-Period Model

- The investor allocates a capital W_0 to be invested in the set of risky assets and the risk-less asset.
- The realized wealth W at the end of the period is given by
 \[
 W(\omega) = \omega^T X + [W_0 - 1^T \omega] R.
 \]

- ω is n-dimensional vector representing the allocation in the risky assets and 1 is a n-vector of ones.
The Single-Period Model

- The investor allocates a capital W_0 to be invested in the set of risky assets and the risk-less asset.
- The realized wealth W at the end of the period is given by
 \[W(\omega) = \omega^T \mathbf{X} + [W_0 - 1^T \omega] R. \]

(1)

- ω is n-dimensional vector representing the allocation in the risky assets and 1 is a n-vector of ones.
- The single period investor is interested in determining ω^* as an ambiguity-robust portfolio allocation in the sense that it solves the following problem
 \[
 \max_{\omega} \left\{ \min_{Y \in U_X} \mathbb{E}[-e^{-\alpha W(\omega)}] \right\}
 \]

(2)

where α is a positive constant.
The Optimal Portfolio Choice

Proposition

A closed form solution for the problem (2) is obtained as

\[
\omega^* = \begin{cases}
\left(\frac{\sqrt{H} - \sqrt{\epsilon}}{\alpha \sqrt{H}} \right) \Sigma^{-1} \mu & \text{if } H > \epsilon \\
0 & \text{o.w.}
\end{cases}
\]

where \(H = \mu^T \Sigma^{-1} \mu \) and \(\bar{\mu} = \bar{X} - R1. \)
Properties of the Optimal Portfolio Choice

- While the investor’s risk aversion or appetite is controlled by the parameter α, the parameter ϵ controls the ambiguity aversion.
Properties of the Optimal Portfolio Choice

- While the investor’s risk aversion or appetite is controlled by the parameter α, the parameter ϵ controls the ambiguity aversion.
- For $\epsilon = 0$ the ambiguity aversion is nil and we recover the optimal mean-variance portfolio ω_M that is also obtained by solving

$$\max_{\omega} \mathbb{E}[-e^{-\alpha W(\omega)}].$$

(4)
Properties of the Optimal Portfolio Choice

- While the investor’s risk aversion or appetite is controlled by the parameter α, the parameter ϵ controls the ambiguity aversion.
- For $\epsilon = 0$ the ambiguity aversion is nil and we recover the optimal mean-variance portfolio ω_M that is also obtained by solving
 \[
 \max_{\omega} \mathbb{E}[-e^{-\alpha W(\omega)}].
 \]
 (4)
 The solution ω_M is known to be
 \[
 \omega_M = \frac{1}{\alpha} \Sigma^{-1}(\bar{X} - R1).
 \]
 (5)
Properties of the Optimal Portfolio Choice

- While the investor’s risk aversion or appetite is controlled by the parameter α, the parameter ϵ controls the ambiguity aversion.

- For $\epsilon = 0$ the ambiguity aversion is nil and we recover the optimal mean-variance portfolio ω_M that is also obtained by solving

$$
\max_{\omega} \mathbb{E}[-e^{-\alpha W(\omega)}].
$$

(4)

The solution ω_M is known to be

$$
\omega_M = \frac{1}{\alpha} \Sigma^{-1}(\bar{X} - R1).
$$

(5)

- On the other hand, for fixed α, when ϵ tends to H, we obtain a risk-less portfolio since all wealth is invested into the risk-less asset.
The ambiguity-robust portfolio (3) is mean-variance efficient.
Further Properties of the Optimal Portfolio Choice

- The ambiguity-robust portfolio (3) is mean-variance efficient.
- Furthermore, the factor \sqrt{H} is precisely the slope of the Capital Market Line (CML) in the MV portfolio theory.
Further Properties of the Optimal Portfolio Choice

- The ambiguity-robust portfolio (3) is mean-variance efficient.
- Furthermore, the factor \sqrt{H} is precisely the slope of the Capital Market Line (CML) in the MV portfolio theory.
- The ambiguity-robust portfolio is partially separated.
The ambiguity-robust portfolio (3) is mean-variance efficient.

Furthermore, the factor \sqrt{H} is precisely the slope of the Capital Market Line (CML) in the MV portfolio theory.

The ambiguity-robust portfolio is partially separated.

Partial separation has the consequence that optimal portfolios are affine or linear functions of the initial wealth W_0.
The ambiguity-robust portfolio (3) is mean-variance efficient.

Furthermore, the factor \sqrt{H} is precisely the slope of the Capital Market Line (CML) in the MV portfolio theory.

The ambiguity-robust portfolio is partially separated

Partial separation has the consequence that optimal portfolios are affine or linear functions of the initial wealth W_0.

In this case, the optimal portfolio rule is simply a constant as a function of initial wealth since it is completely independent of it.
For simplicity I develop initially the result for a two-period problem.
A Two-Period Optimal Portfolio Choice Problem

- For simplicity I develop initially the result for a two-period problem.
- There are two time points $t = 0, 1$ at which the portfolio choice is made, the end of the time horizon $t = 2$ (in general $t = T$) is the moment where the final realized portfolio value, say W_2 (W_T) is revealed.
A Two-Period Optimal Portfolio Choice Problem

- For simplicity I develop initially the result for a two-period problem.
- There are two time points $t = 0, 1$ at which the portfolio choice is made, the end of the time horizon $t = 2$ (in general $t = T$) is the moment where the final realized portfolio value, say W_2 (W_T) is revealed.
- The n risky assets have normally distributed, independent returns in each time period,
A Two-Period Optimal Portfolio Choice Problem

- For simplicity I develop initially the result for a two-period problem.
- There are two time points $t = 0, 1$ at which the portfolio choice is made, the end of the time horizon $t = 2$ (in general $t = T$) is the moment where the final realized portfolio value, say W_2 (W_T) is revealed.
- The n risky assets have normally distributed, independent returns in each time period,
- i.e., the return vector X_1 which follows a Gaussian law with mean Y_1 and p.d. variance-covariance matrix Σ_1, and
A Two-Period Optimal Portfolio Choice Problem

- For simplicity I develop initially the result for a two-period problem.
- There are two time points \(t = 0, 1 \) at which the portfolio choice is made, the end of the time horizon \(t = 2 \) (in general \(t = T \)) is the moment where the final realized portfolio value, say \(W_2 (W_T) \) is revealed.
- The \(n \) risky assets have normally distributed, independent returns in each time period,
- i.e., the return vector \(X_1 \) which follows a Gaussian law with mean \(Y_1 \) and p.d. variance-covariance matrix \(\Sigma_1 \), and
- \(X_2 \) follows a Gaussian law with mean \(Y_2 \) and positive definite variance-covariance matrix \(\Sigma_2 \).
A Two-Period Optimal Portfolio Choice Problem

- For simplicity I develop initially the result for a two-period problem.
- There are two time points \(t = 0, 1 \) at which the portfolio choice is made, the end of the time horizon \(t = 2 \) (in general \(t = T \)) is the moment where the final realized portfolio value, say \(W_2 (W_T) \) is revealed.
- The \(n \) risky assets have normally distributed, independent returns in each time period,
- i.e., the return vector \(X_1 \) which follows a Gaussian law with mean \(Y_1 \) and p.d. variance-covariance matrix \(\Sigma_1 \), and
- \(X_2 \) follows a Gaussian law with mean \(Y_2 \) and positive definite variance-covariance matrix \(\Sigma_2 \).
- For simplicity, the risk-less asset is assumed to have invariant per period return \(R \geq 1 \).
A Two-Period Optimal Portfolio Choice Problem under Ambiguity

I confine the mean \mathbf{Y}_1 of the first period return vector \mathbf{X}_1 to take values in the ellipsoidal ambiguity set around $\bar{\mathbf{X}}$:

$$U_{\bar{\mathbf{X}}}^1 = \{ \mathbf{Y}_1 | \| \Sigma_1^{-1/2} (\mathbf{Y}_1 - \bar{\mathbf{X}}_1) \|_2 \leq \sqrt{\epsilon} \},$$

and
A Two-Period Optimal Portfolio Choice Problem under Ambiguity

- I confine the mean \mathbf{Y}_1 of the first period return vector \mathbf{X}_1 to take values in the ellipsoidal ambiguity set around $\bar{\mathbf{X}}$:

$$U^1_{\bar{\mathbf{X}}} = \{ \mathbf{Y}_1 | \| \Sigma_1^{-1/2} (\mathbf{Y}_1 - \bar{\mathbf{X}}_1) \|_2 \leq \sqrt{\epsilon} \}$$

and

- the mean \mathbf{Y}_2 of the second period return vector \mathbf{X}_2 to take values in the ellipsoidal ambiguity set around $\bar{\mathbf{X}}$:

$$U^2_{\bar{\mathbf{X}}} = \{ \mathbf{Y}_2 | \| \Sigma_2^{-1/2} (\mathbf{Y}_2 - \bar{\mathbf{X}}_2) \|_2 \leq \sqrt{\epsilon} \}.$$
A Two-Period ARO Portfolio Choice Problem

- The ARO dynamic portfolio choice

\[V_2 = \max_{\omega_2} \min_{Y_2 \in U_2^2} \mathbb{E}_1[-e^{-\alpha W_2(\omega_2)}] \] (6)

Where \(W_2(\omega_2) = \omega_2 T + \left[W_1 - 1 \cdot \omega_2\right] R\), \(\mathbb{E}_1 \) denotes expectation after period 1 has elapsed, and

\[V_1 = \max_{\omega_1} \min_{Y_1 \in U_1} \mathbb{E}_1[\mathbb{E}_2[V_2]] \], (7)

\(W_1 \) is the portfolio value at the end of period 1, the observer at time \(t = 1 \) will have already observed \(W_1 \), therefore, at the moment of making the choice for \(\omega_2 \) (i.e., beginning of stage 2) \(W_1 \) is no longer stochastic.
A Two-Period ARO Portfolio Choice Problem

- The ARO dynamic portfolio choice

\[V_2 = \max_{\omega_2} \min_{Y_2 \in U_X^2} E_1[-e^{-\alpha W_2(\omega_2)}] \] \hfill (6)

- where \(W_2(\omega_2) = \omega_2^T X_2 + [W_1 - 1^T \omega_2] R \), \(E_1 \) denotes expectation after period 1 has elapsed, and
A Two-Period ARO Portfolio Choice Problem

- The ARO dynamic portfolio choice
 \[V_2 = \max_{\omega_2} \min_{Y_2 \in U_X^2} \mathbb{E}_1[-e^{-\alpha W_2(\omega_2)}] \]
 where \(W_2(\omega_2) = \omega_2^T X_2 + [W_1 - 1^T \omega_2] R \), \(\mathbb{E}_1 \) denotes expectation after period 1 has elapsed, and

- and
 \[V_1 = \max_{\omega_1} \min_{Y_1 \in U_X^1} \mathbb{E}[V_2], \]
A Two-Period ARO Portfolio Choice Problem

- The ARO dynamic portfolio choice

\[V_2 = \max_{\omega_2} \min_{Y_2 \in U_2^X} \mathbb{E}_1[-e^{-\alpha W_2(\omega_2)}] \]

where \(W_2(\omega_2) = \omega_2^T X_2 + [W_1 - 1^T \omega_2] R \), \(\mathbb{E}_1 \) denotes expectation after period 1 has elapsed, and

- and

\[V_1 = \max_{\omega_1} \min_{Y_1 \in U_1^X} \mathbb{E}[V_2], \]

- \(W_1 \) is the portfolio value at the end of period 1,
A Two-Period ARO Portfolio Choice Problem

- The ARO dynamic portfolio choice

\[V_2 = \max_{\omega_2} \min_{Y_2 \in U_2^X} \mathbb{E}_1[-e^{-\alpha W_2(\omega_2)}] \]

where \(W_2(\omega_2) = \omega_2^T X_2 + [W_1 - 1^T \omega_2]R \), \(\mathbb{E}_1 \) denotes expectation after period 1 has elapsed, and

- and

\[V_1 = \max_{\omega_1} \min_{Y_1 \in U_1^X} \mathbb{E}[V_2], \]

- \(W_1 \) is the portfolio value at the end of period 1,

- the observer at time \(t = 1 \) will have already observed \(W_1 \), therefore, at the moment of making the choice for \(\omega_2 \) (i.e., beginning of stage 2) \(W_1 \) is no longer stochastic.
Solving Backwards: Period 2

The following problem is solved:

$$\max_{\omega_2} -e^{-\alpha[\omega_2^T \tilde{X}_2 - R\omega_2^T 1 - \frac{\alpha}{2} \omega_2^T \Sigma_2 \omega_2 - \sqrt{\epsilon \omega_2^T \Sigma_2 \omega_2} + W_1 R]}.$$
(8)
Solving Backwards: Period 2

The following problem is solved:

$$\max_{\omega_2} -e^{-\alpha[\omega_2^T \tilde{X}_2 - R \omega_2^T \mathbf{1} - \frac{\alpha}{2} \omega_2^T \Sigma_2 \omega_2 - \sqrt{\epsilon} \omega_2^T \Sigma_2 \omega_2 + W_1 R]}.$$ \hspace{1cm} (8)

By Proposition 1, the solution ω_2^* is given by

$$\omega_2^* = \left(\frac{\sqrt{H_2} - \sqrt{\epsilon}}{\alpha \sqrt{H_2}} \right) \Sigma^{-1} \bar{\mu}_2 \hspace{1cm} (9)$$

where $H_2 = \bar{\mu}_2^T \Sigma^{-1}_2 \bar{\mu}_2$ and $\bar{\mu}_2 = \tilde{X}_2 - R \mathbf{1}$, provided that $H_2 > \epsilon$.
Solving Backwards: Period 2

The following problem is solved:

$$\max_{\omega_2} -e^{-\alpha[\omega_2^T \tilde{X}_2 - R \omega_2^T \mathbf{1} - \frac{\alpha}{2} \omega_2^T \Sigma_2 \omega_2 - \sqrt{\epsilon \omega_2^T \Sigma_2 \omega_2} + W_1 R]}.$$ \hspace{1cm} (8)

By Proposition 1, the solution ω_2^* is given by

$$\omega_2^* = \left(\frac{\sqrt{H_2} - \sqrt{\epsilon}}{\alpha \sqrt{H_2}}\right) \Sigma^{-1} \bar{\mu}_2$$ \hspace{1cm} (9)

where $H_2 = \bar{\mu}_2^T \Sigma_2^{-1} \bar{\mu}_2$ and $\bar{\mu}_2 = \tilde{X}_2 - R \mathbf{1}$, provided that $H_2 > \epsilon$.

This solution gives

$$V_2 = -e^{-\alpha[(\gamma - \frac{\alpha}{2} \gamma^2)H_2 - \sqrt{\epsilon H_2} + W_1 R]} ,$$

where $\gamma = \frac{\sqrt{\epsilon + H_2} - \sqrt{\epsilon}}{\alpha \sqrt{\epsilon + H_2}}$.

PINAR Robust Dynamic Portfolio Management under Ambiguity
Solving Backwards: Period 1

The problem of computing V_1

$$V_1 = \max_{\omega_1} \min_{Y_1 \in U^1_{\bar{X}}} \mathbb{E} \left[e^{-\alpha \left(\gamma - \frac{\alpha^2}{2} \right) H_2 - \sqrt{\epsilon} H_2 + W_1 R } \right]$$

where $W_1 = \omega_1^T X_1 + [W_0 - 1^T \omega_1] R$.

One can easily continue the backward process when $T > 2$.

Solving Backwards: Period 1

- The problem of computing V_1
 \[V_1 = \max_{\omega_1} \min_{Y_1 \in U_1^X} \mathbb{E}[e^{-\alpha \left(\gamma - \frac{\alpha}{2} \gamma^2\right)H_2 - \sqrt{\epsilon}H_2 + W_1 R}] \]
 where $W_1 = \omega_1^T X_1 + [W_0 - 1^T \omega_1] R$.

- Hence solve
 \[\max_{\omega_1} -e^{-\alpha \kappa} e^{-\alpha R \left[\omega_1^T \bar{X}_1 - R \omega_1^T 1 - \frac{\alpha R}{2} \omega_1^T \Sigma_1 \omega_1 - \sqrt{\epsilon \omega_1^T \Sigma_1 \omega_1} + W_0 R\right]} \]
 where I defined $\kappa = (\gamma - \frac{\alpha}{2} \gamma^2)H_2 - \sqrt{\epsilon}H_2$.

One can easily continue the backward process when $T > 2$.

PINAR Robust Dynamic Portfolio Management under Ambiguity
Solving Backwards: Period 1

- The problem of computing V_1

\[
V_1 = \max_{\omega} \min_{Y_1 \in U_1^1} \mathbb{E}[e^{-\alpha[(\gamma - \frac{\alpha}{2}\gamma^2)H_2 - \sqrt{\epsilon H_2} + W_1 R]}]
\]

where $W_1 = \omega_1^T X_1 + [W_0 - 1^T \omega_1] R$.

- Hence solve

\[
\max_{\omega_1} -e^{-\alpha \kappa} e^{-\alpha R[\omega_1^T \bar{X}_1 - R\omega_1^T 1 - \frac{\alpha R}{2} \omega_1^T \Sigma_1 \omega_1 - \sqrt{\epsilon \omega_1^T \Sigma_1 \omega_1} + W_0 R]}
\]

where I defined $\kappa = (\gamma - \frac{\alpha}{2}\gamma^2)H_2 - \sqrt{\epsilon H_2}$.

- The optimal portfolio ω_1^* for $H_1 > \epsilon$

\[
\omega_1^* = \left(\frac{\sqrt{H_1} - \sqrt{\epsilon}}{\alpha R \sqrt{H_1}} \right) \Sigma_1^{-1} \bar{\mu}_1.
\]
Solving Backwards: Period 1

- The problem of computing V_1

$$V_1 = \max_{\omega_1} \min_{Y_1 \in U\bar{X}_1} \mathbb{E}[e^{-\alpha[(\gamma - \frac{\alpha}{2} \gamma^2)H_2 - \sqrt{\epsilon H_2} + W_1 R]}]$$

where $W_1 = \omega_1^T X_1 + [W_0 - \mathbf{1}^T \omega_1] R$.

- Hence solve

$$\max_{\omega_1} -e^{-\alpha \kappa} e^{-\alpha R[\omega_1^T \bar{X}_1 - R\omega_1^T \mathbf{1} - \frac{\alpha R}{2} \omega_1^T \Sigma_1 \omega_1 - \sqrt{\epsilon \omega_1^T \Sigma_1 \omega_1 + W_0 R}]}$$

where I defined $\kappa = (\gamma - \frac{\alpha}{2} \gamma^2)H_2 - \sqrt{\epsilon H_2}$.

- The optimal portfolio ω_1^* for $H_1 > \epsilon$:

$$\omega_1^* = \left(\frac{\sqrt{H_1} - \sqrt{\epsilon}}{\alpha R \sqrt{H_1}} \right) \Sigma_1^{-1} \bar{\mu}_1.$$ \hspace{1cm} (10)

- One can easily continue the backward process when $T > 2$.
I choose a distinct ambiguity radius ϵ_t for each period $t = 1, \ldots, T$

\[
\max_{\omega_t} -K_t e^{-\alpha \prod_{j=t+1}^T R_j [\omega_t^T \bar{X}_t - R_t \omega_t^T 1] - \frac{\alpha \prod_{j=t+1}^T R_j}{2} \omega_t^T \Sigma_t \omega_t - \sqrt{\epsilon_t \omega_t^T \Sigma_t \omega_t + W_{t-1} R_t}}
\]

for some positive constant K_t.

(11)
A More General Case

- I choose a distinct ambiguity radius ϵ_t for each period $t = 1, \ldots, T$.
- Assume a varying risk-less rate (known a priori) R_t for each period $t = 1, \ldots, T$.

The optimal portfolio choice ω_t^* at stage t is obtained by solving

$$
\max_{\omega_t} -K_t e^{-\alpha \prod_{j=t+1}^T R_j [\omega_t^T \bar{X}_t - R_t \omega_1^T 1 - \frac{\alpha \prod_{j=t+1}^T R_j}{2} \omega_t^T \Sigma_t \omega_t - \sqrt{\epsilon_t \omega_t^T \Sigma_t \omega_t} + W_{t-1} R_t]}
$$

for some positive constant K_t.

(11)
A More General Case

- I choose a distinct ambiguity radius ϵ_t for each period $t = 1, \ldots, T$.
- Assume a varying risk-less rate (known a priori) R_t for each period $t = 1, \ldots, T$.
- The optimal portfolio choice ω_t^* at stage t is obtained by solving

$$
\max_{\omega_t} \quad -K_t e^{-\alpha \prod_{j=t+1}^T R_j [\omega_t^T \bar{X}_t - R_t \omega_1^T 1 - \frac{\alpha}{2} \prod_{j=t+1}^T R_j \omega_t^T \Sigma_t \omega_t - \sqrt{\epsilon_t} \omega_t^T \Sigma_t \omega_t + W_{t-1} R]}
$$

for some positive constant K_t.

(11)
The ARO Problem in T Periods

The adjustable robust dynamic portfolio problem is

$$V_T = \max_{\omega_T} \min_{Y_T \in U_X^T} \mathbb{E}_{T-1}[-e^{-\alpha W_T(\omega_T)}]$$ \hspace{1cm} (12)$$

$$V_{T-1} = \max_{\omega_{T-1}} \min_{Y_{T-1} \in U_X^{T-1}} \mathbb{E}_{T-2}[V_{T-1}],$$ \hspace{1cm} (13)$$

$$\vdots$$

$$V_1 = \max_{\omega_1} \min_{Y_1 \in U_X^1} \mathbb{E}[V_2],$$ \hspace{1cm} (14)$$
The adjustable robust dynamic portfolio policy is given by

$$\omega^*_t = \frac{\sqrt{H_t} - \sqrt{\epsilon_t}}{\alpha(\prod_{j=t+1}^{T} R_j)\sqrt{H_t}} \Sigma_t^{-1} \bar{\mu}_t, \ t = 1, \ldots, T, \quad (15)$$

where $\bar{\mu}_t = \tilde{X}_t - R_t 1$, provided that $\epsilon_t < H_t$ for all $t = 1, \ldots, T$.
Properties of the Optimal Policy

- The investor, faced with the opportunity to re-invest his wealth by re-organizing the portfolio, uses a portfolio strategy similar to the single period problem.
Properties of the Optimal Policy

- The investor, faced with the opportunity to re-invest his wealth by re-organizing the portfolio, uses a portfolio strategy similar to the single period problem.

- In fact, the optimal policy at period t is the same as the one that would be used if the investor were dealing with a single period problem.
Properties of the Optimal Policy

- The investor, faced with the opportunity to re-invest his wealth by re-organizing the portfolio, uses a portfolio strategy similar to the single period problem.

- In fact, the optimal policy at period t is the same as the one that would be used if the investor were dealing with a single period problem where he chooses ω_t to maximize the robust expected wealth at the end of t and subsequently re-invest the realized wealth, say \tilde{W}_t, at the rates $R_{t+1}, R_{t+2}, \ldots, R_T$, exclusively in the risk-less asset.
Properties of the Optimal Policy

- The investor, faced with the opportunity to re-invest his wealth by re-organizing the portfolio, uses a portfolio strategy similar to the single period problem.

- In fact, the optimal policy at period \(t \) is the same as the one that would be used if the investor were dealing with a single period problem where he chooses \(\omega_t \) to maximize the robust expected wealth at the end of \(t \) and subsequently re-invest the realized wealth, say \(\tilde{W}_t \), at the rates \(R_{t+1}, R_{t+2}, \ldots, R_T \), exclusively in the risk-less asset.

- Such a policy is called a partially myopic policy; Mossin (1968).
I.e., the investor solves

\[
\max_{\omega_t} \min_{Y_t \in U^t_X} \mathbb{E}[-K_t e^{-\alpha(\prod_{j=t+1}^T R_j)} W(\omega_t)]
\]
Properties of the Optimal Policy (cont’d)

- I.e., the investor solves

\[
\max_{\omega_t} \min_{Y_t \in U_X^t} \mathbb{E}[-K_t e^{-\alpha(\prod_{j=t+1}^T R_j)} W(\omega_t)]
\]

- where \(W(\omega_t) = \omega_t^T X_t + [W_{t-1} - 1^T \omega_t] R_t \),
Properties of the Optimal Policy (cont’d)

- i.e., the investor solves

\[
\max_{\omega_t} \min_{Y_t \in U_t^X} \mathbb{E}[-K_t e^{-\alpha(\prod_{j=t+1}^T R_j) W(\omega_t)}]
\]

- where \(W(\omega_t) = \omega_t^T X_t + [W_{t-1} - 1^T \omega_t] R_t \),

- and the result is exactly the maximization problem in (11).
Properties of the Optimal Policy: Special Case

- The portfolio strategy obtained by substituting $\epsilon = 0$

$$\omega^*_t = \frac{1}{\alpha(\prod_{j=t+1}^{T} R_j)} \Sigma_t^{-1} \bar{\mu}_t, \quad t = 1, \ldots, T,$$
The portfolio strategy obtained by substituting $\epsilon = 0$

$$\omega_t^* = \frac{1}{\alpha(\prod_{j=t+1}^T R_j)} \sum_{t}^{-1} \mu_t, \ t = 1, \ldots, T,$$

is precisely the multi-period optimal strategy of Mossin (1968)
The optimal portfolio policy is an *affine* function of the period t nominal expected return \bar{X}_t:

$$\omega^*_t = \frac{\sqrt{H_t} - \sqrt{\epsilon_t}}{\alpha(\prod_{j=t+1}^{T} R_j)\sqrt{H_t}} \Sigma_t^{-1}(\bar{X}_t - R_t1), \ t = 1, \ldots, T. \quad (16)$$
Another View of the Optimal Policy: Affine Policy

- The optimal portfolio policy is an *affine* function of the period t nominal expected return \bar{X}_t:

$$\omega_t^* = \frac{\sqrt{H_t} - \sqrt{\epsilon_t}}{\alpha(\prod_{j=t+1}^{T} R_j)^{\sqrt{H_t}}} \sum_t^{-1}(\bar{X}_t - R_t \mathbf{1}), \ t = 1, \ldots, T. \quad (16)$$

- Thus, we can assert that the optimal portfolio policy is an *affinely adjustable* robust portfolio policy,
The optimal portfolio policy is an *affine* function of the period t nominal expected return \bar{X}_t:

$$\omega_t^* = \frac{\sqrt{H_t} - \sqrt{\epsilon_t}}{\alpha(\prod_{j=t+1}^{T} R_j)\sqrt{H_t}} \Sigma_t^{-1}(\bar{X}_t - R_t1), \ t = 1, \ldots, T. \quad (16)$$

Thus, we can assert that the optimal portfolio policy is an *affinely adjustable* robust portfolio policy,

Usually, the procedure is reversed.
Another View of the Optimal Policy: Affine Policy

- The optimal portfolio policy is an *affine* function of the period *t* nominal expected return \tilde{X}_t:

$$
\omega_t^* = \frac{\sqrt{H_t} - \sqrt{\epsilon_t}}{\alpha(\prod_{j=t+1}^{T} R_j)\sqrt{H_t}} \Sigma_t^{-1}(\tilde{X}_t - R_t1), \ t = 1, \ldots, T. \quad (16)
$$

- Thus, we can assert that the optimal portfolio policy is an *affinely adjustable* robust portfolio policy,

- Usually, the procedure is reversed.

- One formulates an ARO problem and approximates it using an affine policy.